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Kochin td solved the plane linear problem of waves on the free surface 

of a heavy liquid of infinite depth, caused by vibrations of a body 

immersed in the liquid. Khaskind td used Kochin’s method [II to study 

a similar problem for a liquid of finite depth. In [31 Kochin’ s method 

was used for study of the case when there is another layer of lighter 

liquid of finite depth with a free surface, overlying the surface of a 

liquid of infinite depth in which the body is oscillating. Below we con- 

sider the analogous problem for oscillations of a body in the upper 

layer of liquid. 

1. Formulation of the problem. Let the contour of the body r of arbi- 

trary shape perform periodic oscillations in a layer of homogeneous in- 

compressible liquid of density p1 and finite thickness d, which lies on 

another liquid of density p2(p2 > pl) and in- 

finite depth (Fig. 1). To the usual assump- 

tions of the linear theory of waves we add 

the requirement that the waves diverge hori- 

zontally from the body on both sides. By 

virtue of the linearity of the problem we con- 

sider only harmonic oscillations of the con- 

4 tour i- with the specified frequency k 

Fig. 1. 27,’ (s’, t’)= u1 (s’) cos At’ + u,’ (s’) sin kt’ (I.11 

where u,,’ is the normal component of the velocity of an arbitrary point 

of the contour r, which corresponds to the arc length s’, measured from 
a certain fixed point 01 on r. Then assuming that the oscillations of 

the liquid are steady and potential, we have the complex velocity 
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potential in the form (t’ = X’ + iy’) 

wj (z’, t’) = wjl’ (2’) cos kt’ + wjZ’(z’) sin kt’ (1.2) 

Here and in what follows j = 1 and j = 2 for the upper and lower 
liquid, respectively. 

Transforming to dimensionless quantities according to the formulas 

z’ = zd, Wim’ zzz wj,kd2, E 
k2d 

= po9 -F = v 
(1.3; 

we obtain the following problem for the functions Gjm(z) = dwjm(z)/dz. 

To find the functions Vim(z) and ii2m (z), analytic in the respective 

regions G, and G2 (Cl is the region in the strip - 1 < Im z < 0 outside 

the contour I-, Gz is the half-plane Im z < - 1) and satisfying the con- 

ditions: 

I 
=O wheny=O 

sm] = 0 when y = - 1 

c) Im + ivv -2m = 0 when y = - 1 

d) The functions Tij,,,(z) are bounded in Gj and FJzm(z) - 0 when 

Y - - co* 

e) The waves on the free boundary and on the interface diverge on 

both sides from the body profile I-. 

f) Re IG1,eie] = U, (s) on I 

Here 0 is the angle between the exterior normal n to the contour i- 

and the r-axis. 

On the basis of (1.2) and (1.3) we have for the complex velocities 

of the liquids 

_‘i (z, t) = dWj/dz = Gjl (z) cos t + zjZ (z) sin t 

We find the free boundary and the interface according 

6, (z, t) = - Im I<rl (Zj cos t - ;I2 (2) sin tlv=e 

6, (2, t) = - Im ]& (2) cos t - Vzz (z) sin t]v=l 

(1.4j 

to the formulas 

(1.5) 

2. Construction of the solution. 1. Let us represent the required 

functions iJjm(z) in the form 
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where Qj,(z) are functions, analytic in their regions Gj and satisfying 

conditions (a) to (d), whilst the functions Fin(t) and F,,(Z) are 

analytic respectively in the regions Cl’ and G2 (“1‘ is the strip - 1 < 

Im z < 0) and also satisfy conditions (a) to (d). Conditions (e) and (f) 

are to be satisfied, not by the functions Rj,(z) and Fj,(z) separately, 

but by their sums Fjn(z) from equation (2. I). 

2. Let US find the functions aj,(t) with the following properties. 

The functions wIn( Z) are analytic in the region G,’ everywhere except at 
the point 5 = c + iq, where they have a polar singularity with the resi- 

due N = N ’ + iN,,,‘: The functions Ok,,, are analytic in G2. The func- in 
tions tiI,,,(F) and azm(z) satisfy conditions (a) to (d). 

Let us isolate the singularity at the point 5, setting 

(2.2) 

Then the functions ?Im(x) and GJ~,,,(z) are analytic in the regions Cl’ 

and G2 respectively, whilst their real parts pj,(z, y) satisfy conditions 

%nz f%m %%Tl 
--VI.&= j,,(x) wheny=O, T-7=jSm(x) wheny=-1 

ay 

%JWl 
- - Wl?n =!a,(~) wheny=- 1 

(2.3) 

ay 

and the functions pin and +,,, are bounded in their regions GI’ and Gz 

respectively, and pa,,, - 0 when y -. - CQ (condition (d)). 

Here 

j,,(x) = Im 2 when y = - 1, if, (4=1m 
~ 

ds?n 
7 + ivs, 

1 

when y = 0 for L = 1, when y = - 1 for 1 = 3. 

Representing the functions f Lm(x) by Fourier integrals, seeking the 

functions -rim(t) and Wan in the form of Fourier integrals, and making 

use of condition (2.3), we obtain 

[2iN,A sin h (z - 6) + FmBeeia @-t) + 

Here 
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A = r (A + Y) e-2a 

T (A) 

, B=4va-r(k-V)[2v+(h+v)e-2*] 

(h - v) T (W 
(2.5) 

r(h-v) - 
’ = T(h) e 2’ 

2v 

’ D=.(h)’ E = (h”“-i”yTtT’:h) 

T(h) 5 2v -+ r [(A + v) e-2a - A + v)], r=po- 

For any v > 0 equation T(A) = 0 has one root h = h, > 

for the integrals in expressions (2.4) it is appropriate 

principal values in the Cauchy sense. 

i 

0. Consequently 

to take their 

3. Let us distribute along the contour r polar singularities with 

residues of N,,, = y,(a)da/2a, where o is the arc length of the contour i- 
corresponding to the point L(u) of this contour. 

Then, integrating expressions (2.4) along the contour r, we obtain 

the functions 

f&,,(z) = $\T,,o){z~+z~j- ir [2iAsinh(z- c) +Be-iA(Z-~‘+ 

5 (2.6) 

+ Ceih cz-c)] dhj da, Q,, (z) = &- \ ‘rrn (i {r [Deei’ (z-L) f Eeeih (‘-<)] db} da 

r 0 

which, by virtue of the linearity of the problem, are analytic in the 

regions G1 and G,, respectively, and satisfy conditions (a) to (d). 

4. Starting from the form of a particular solution of Laplace’s equa- 

tion and from conditions (a) to (d), we find the following functions, 

analytic in the regions G,’ and Gg: 

F,, (z) = A,e-ixo* + Bme-iYz f C,eiAo*, F,, (z) = D,,,t+ + E,e-iVL (2.7) 

where Am, . . . . l?,,, are certain constants. Then, from (2.1) we obtain 

G2,,, (z) = & \ yrn (a) {y [Dewi’ (r-c) + EeLiA (z-%] dh)da+ Dm-ihOZ+Eme-ivz 

r 0 

From the linearity of the problem it follows that the functions 
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iijm(z) from (2.8) are analytic in Gj and satisfy conditions (a) to (d). 

The functions y,(a) and the constants Am, . . . , Em we shall find from 

conditions (e) and (f). 

3. Determination of the coefficients A,, . . . , B,. We shall make use 

of condition (e) for finding the quantities Am, . . . . Em. In expressions 

(2.8) let us pass from integrals in the sense of the principal value to 

integrals along the contours L_, L,, L_’ and L,’ in the plane of the 

complex variable h (Figs. 2 and 3). 

Fig. 2. Fig. 3. 

Then, writing 

i 
s 

rm (a) epihr. da = H,,, (2.) (3.1) 
r 

we obtain 

f {Cm 7 i [AC&~ (ho) - Cdr, (- ho)]) eih** + {B, F ~B”H, (v)} ebiv* (3.3) 

F (ho + v) e-2)ir 

A@ = 2T’ (ho) ’ 

B,= ’ C 
r(ko- v) 

1 $ Fe-‘” ’ o== ZT’(h,) 
e-2A, 

’ T’ (10) = ($+ 

Here the upper sign is taken when x < 0, and the lower sign when 

x ’ 0. 

(3.4) 

Xt is easy to verify that in formulas (3.2) 

qm fo) ---, RmT (z) when 12 1 --)r 00 

According to formulas (1.4) we obtain asymptotic values for the total 

velocity 
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iI (z, t) s Rlr (z) cos t f Ra’ (z) sin t when x - F=J 

Consequently, condition (1.5) for the upper liquid can be represented 

in the form 

vr (z, t) 
~ Are-ikOzTit + BTe-ivz+it f c, eih.zfit 

From this condition we obtain 

4, = A,& (- A,) + B,& O.,), A, = - AoH1 (- 

whenx- Too (3.5) 

A,) - B&%o) 

B, = B,& (~1. Bz = - B,HI (~1, (3.6) 

C, = - A,Hz VW) f W, (- A,), C,= A,H, (ho) - CoH, (-- ho) 
-. 

A_ = - iA,h, (- ho) - iB,h, (ho), A, = iA,hz (- h,) + iB,h, (ho) 

B_ = - iB,hz (v) , B, = iB,h, (v), (3.7) 

c- = - i&h, (ho) + iC,h, (- ho), C, = iA,h, (h,) - iC,hz (- ho) 

Here 

hr (A) = Hr (1) + i& (A), h,(h) = HI(h) - iH, (h) (3.8) 

For the lower liquid we find in a completely analogous manner that 

v, (z, t) ,-D,e-ii&rit + ETe-ivzrit when r_, ‘f o. 
(3.9) 

D, = - DA (- ho) + EoH, (ho) D, = DoH, (- ho) - E,H, @,) 

E, = B,Hz (v), E, = - B,H, (v), D_ = iDoh (- 1,) - iEoh, (A,) - (3.10) 

D+ = --iDoh, (-Lo) +iE,h, (ho), E_=- iB,hz (v), E+ = iB,h,(v) 

Here 

Do = T’ yko, 3 
v (ho + v) 

E” = (ho- v) T’ (ho) 
(3.11) 

We shall now explain the meaning of the functions If,,,(A) from (3.1). 

We can prove the equality 
IY 

s G&Z) emihz dz = i 
c 

~~ (a) e?‘!da 

r1 e 

or 

H,,,(h) = \ Glrn (z) e-ihzdz (3.12) 

r1 

where rl is any closed contour in the 

upper liquid including inside itself 

cz 

FIG. 4. 
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the contour r (Fig. 4). 

For this it is sufficient to substitute the values of the functions 

FIR(z) from (2.8) and make use of the known properties of analytic func- 

tions and equation (3.1). Consequently, the functions H,(h) are general- 
ised circulations for certain fictitious fluid flows with the complex 

potentials w;=(z), i.e. they are the functions of Kochin [Il. 

4. Determination of the functions yn(cr). 1. We find the functions 

y,(o) with the help of condition (f). For definiteness. we choose the 

origin of coordinates 0 so that Re z > 0 for points z on the contour r 

(Figs. 1 and 4). Then, using (3.2). (3.3). (3.6) and (3.7), we obtain 

Here 

Al’ = A+, B1’ = B,, c1’ = c*, A,’ = iAl’, B2’ r= iB,‘, C,’ = - iC,’ (4.2) 

Let the contour r be simple and have continuous curvature, Substitut- 

ing the functions i;,,,,(z) from (4.1) in condition (f) and using the pro- 
perties of integrals of Cauchy type, we obtain the integral equations 

Ym (s) = - KY, + & 6) (4.3) 

where the arc length s corresponds to the point z on the contour f and 

(4.4) 

* f, (s) = 2u, (s) - 2Fie [ele (A mfe-ih,z + Bmfe-ivx + cm* ,iX,tf 1 
(4.5) 

It is evident that we obtain linear integral equations of Fredholm 

type with a continuous kernel. 

If the contour r oscillates but does not deform, then 

c urn(s) ds = 0, 

+ 
5 I( (s, o) ds = 1 
r 

Then, integrating both parts of equation (4.3) with respect 
s E [O, bl , where b is the length of the contour i-, we obtain 

to 
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s -fm (s) ds = 0 (4.6) 
r 

On the basis of (4.6)) equations (4.3) are equivalent to equations 

Tm (4 = - KOT, + f, (4 (K,=K--l/b) (4.7) 

The solutions of these equations can be sought by the method of 

successive approximations 

qmK (s) = &q,. k-i, qm (s) = fm (8) (4.8) 
k=o 

With the help of the principle of compressive transformations [41 we 

establish the condition for convergence of the process (4.8) to a unique 

solution. We shall seek the solution of equation (4.7) in the class 7 of 

functions, bounded when s E CO, bl. It is easy to prove that if y, E 7, 

then also Fy, E M, where Fy, = ,- Koym + f,(s). Moreover, if Y,,,~ E hf 
and ym2 E b!, then 

I FT, - %,,t 16 II r,nl - rm, IIM s I K. (s, a) I da ( II ~~ llM = sup I 7, (4 I when 4s 10, 4) 
r 

This means that if 

then the operator F is an 

s IKob,NIdu<p<l 
r 

operator of approximation. 

(4.9) 

Accordingly, for contours r’ satisfying condition (4.9) there exist 

solutions, and moreover unique solutions, of equations (4.7), and hence 

also of equations (4.3). From (4.4) we have 

\ \ %I (s, (J) 1 da < -$ \ / Re (SC) - ff da + 4 Isups, ~ 1 
i? 

\ [AQUA (z-i) + 

r L+’ 

+ Ceih (z-t)] & _ Ae-ia (2-i) dh + (s, o E [O, bl) 
(4.10) 

L_' 

where a is the least distance from the x-axis to points on the contour 

r. If the contour r is a circle, then 

Accordingly, from the inequality (4.10) we see that condition (4.9) 

is automatically fulfilled for contours I- for which the length b is 
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sufficiently small in comparison with unity and which have a shape suffi- 
ciently close to a circle with radius b/Z*. 

2. Let us find the constants A,,,‘, B,,,’ and Clll’, appearing in expres- 
sion (4.5) for the functions f,,,(s) and appearing, consequently, in solu- 
tion (4.8). Let us represent the functions y,(s) in the form 

r, (4 = I’,” (4 -i- Re IT (s, MA,’ + I- (8, ~1 B,’ + T (s, - ho) C,‘I (4.11) 

where the functions y,“(s) and y(s, A) are solutions of equations 

7,” (s) = - KT,,,” + 2u, W, 7 (s, A) = - K7 - 2ege-ihz (4.12) 

and h takes the values h,, v and -he. Evidently, the solutions of equa- 
tions (4.12) exist also under condition (4.9): Substituting Ye from 
(4.11) in formulas (3.8). we obtain 

h, (h) = N,’ (h) + iH2’ (h) + h (h, ho) A,’ + h (h, v) g< + H (h, - ho) Cl (4.23) 

hs @I = H,” (h) - iHs* (k) + H (k, h,) A,’ f H (h, v) B1’ + h (h, - &,) Fl 

Here 

Hm* (ii) = i S ymo (a) ewihc da, h (h, A) = i \ 7 (o, A) eTihcda 

I\ * 

H (h, A) = i 
s 

r ((3, A) eeihr. da (4.14) 
r 

whilst /\ takes the values h,, v and -3,. Substituting hi(A) and h2(h) 

from (4.13) in formulas (3.7) and taking account of (4.2). we find that 

A;= A,/& B,‘=AnIA, C,’ =: Ezi, /X (4.15) 

where 
AA = PI (&&, - b,c,) + ~a (bsc, - blcs) + ~3 Uw, - hc,) 

A, = PI (ascs - as4 + ps (a,~, - a& i: ps (asc~ - a,4 

AC = PI (a&s - Q&J f us (asbl - a,bs) i- PS (a& - a&& 
(4.16) 

A = a, (&A - bad + ~2 (bsc, - hcd + aa @xc, - bacJ 

1*1= i L%H (- &,, U t- &h (ho, &,)I - 1, as = i E’S (-- b, &,I - ~~h(~, ?&I 

i2.J = iB,h (v, A,), bl=i[A,N(-h,,v)+B,h(n,,y)], bs=iB,h(v,v)--l 

bs = i IDOH 6 L,, ~1 -Ash (ho, @I, CI = i I& 6 hi,, - ho) + Bi,H (h,, -he)] 

e, = iB,H (v, - hd, c, = i I&& (- ho, -I”,) -&H (h,, - h,)] - 1 (4.17) 

PI = - i M&o + B*h &)I* pa = - iB,h (v), ~3 = i [Ash (VI - %hrl 
Here 

hs = HI0 (- hs) - iHs0 (- h,), h(h) = H,” (h) + iHsO (h) 
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and h takes the values h, and v. 

5. Derivation of the fundamental formulas of the problem. 1. Compar- 

ing equations (3.5) and (3.9) with equations (1.4)) we can find the 

asymptotic values of the functions ujm(z) when x - + a. Substituting 

the latter in formulas (1.5), we obtain the asymptotic expressions for 

the wave profiles of the free boundary and the interface, respectively 

Accordingly, on the free boundary and on the interface far from the 

contour of the body r there diverge on both sides of it waves of two 

forms with wave lengths 21r/hu and 2x/v and with amplitudes ajr and Pi? 

respectively, where 

Equating amplitudes, we obtain relations 

Hence it follows that the waves with length Zn/h, develop, basically, 

on the interface, whilst the waves with length 2x/v develop on the free 

surface. 

2. The mean values CM>, <?(>, < Y > over a period of oscillation for 

the principal moment A! and for the projections X and Y of the resultant 

vector of the forces of the liquid pressure on the contour of the body 

I- will be sought according to Kochin’s formulas 111 

(5.4 

where r’ is any contour lying in the region G1 and enclosing the con- 

tour I-. 

Let us transform formulas (5.5). To do this, let us introduce in 

region Cl contours rl and r, as shown in Fig. 4. Then for the functions 

i;,,(z) e analytic and single-values in the region G1. we find from 

Cauchy' s formula 

- 
~Irn (2) = urn (4 + v, (z) (5.5) 
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where the point z lies on the contour r’ and 

It is obvious that the functions U,(z) are analytic outside the con- 

tour r-1 and are of order z-l when z - m, whilst the functions V,(Z) are 

analytic everywhere inside the contour r,. Moreover, rl can be drawn 

arbitrarily close to the contour of the body r, whilst rrn can be drawn 

arbitrarily close to the straight lines y = 0 and y = - 1. 

functions, we obtain Making use of the properties of analytic 

t <a (4 v, (41 dz 

GE (4 I’, (41 zdz) (5.7) 

On the basis of equations (5.5) and (5.6) and the properties of the 

functions U,(t) we can reckon that along the contour rl there are dis- 

tributed polar singularities with densities 61m(:). Then, setting Nn = 

“;l,(g) d</2ni i n equations (2.4)‘ integrating both parts of them along 

t-1 and making use of formulas (3.12) and (5.6). in place of formulas 

(2.6) for the functions nln(z) we can obtain another representation 

i Q,, (z) = u, (4 - 2n r [(B + 1) H,(h) t?-iXz + 
0 

co 

+ CH, (-A) eixz] dh + & \ A [H, (A) eihz - Hm (- k) ewihz] dh 

0 

(5.8) 

Comparing expressions Tim(z) = Q,,(z) + F,,(z) and (5.5), we obtain 

- f& (-- k) eaihr] - [(B f i)H, (I.) eeihz + 

+ GHm (--- h) eihz]) d& $ Ame-i”@z + Bmewiyz + Cmeibz (5.9) 

Substituting Vm(t) from (5.9) in formulas (5.7), we find that 

<X> = Im &4+0 + &al (ho) + Bval fvf + Cp, (- ho)) 
00 

(5.fO) 

<y> = & \ [(B + 1) k, (h) + Ck, (- h)] dh + do Re Ia01 
0 

(5.11) 



1400 V.S. Voitsenia 

A ‘9 + (B + 11 k,(h) + Cks (-_h)] && + 

l-l 

-I- AO [a2 (LO) - a,(- adI + Boa3 (ho) + Bps (Y) f &as (- A.,)) (5.12) 

where 

9 (A) = I HI P4 1’ Jr I Hz 04 Ia. ki @I = H, @I H; (- &I + Hz @I H, (-- W 

k, (W = H, IV H,’ 04 + Hz @I Hz’ 04, a0 = fN-- U 4 (ho) - HI (ho) H, (- LO) 

a1 (h) = HI (V Ha (U, a2 (I.) = HI (- h) H,’ (A) - HB (- A) H,’ (h) (5.13) 

as (h) = H,(h) Hz’ (h) - H, (h) Hx’ {h) 

3. In the fundamental formulas of the problem (5.3), (5. lo), (5.11) 

and (5.12) there appear Kochin’s functions H,(h), which can be found in 

the following way: solving equations (4.12) and substituting the result- 

ing functions y,O(s) and y(s, A) in formulas (4.14), we determine from 
them the functions Ha’(h), h(h, h) and H(h, h); substituting the latter 

in formulas (4.17) and using formulas (4.16), we obtain from formulas 

(4.15) and (4.2) the coefficients As,‘, Bm’ and C,‘. Finally, determining 

the functions y,(s) from (4.11) and substituting them in formulas (3.1), 

we find the functions H,(A). 

But for sufficiently great depth of submersion of the body the func- 

tions ~~(~) can be found approximately by substituting in formulas (3.12) 

- in place of vln (z) the corresponding functions G@(t) for oscillations 

of a body in infinite liquid. 

In conclusion we note that when pI = p2 we obtain Kochin’ a case [ll ; 

setting everywhere in our formulas r = 0, we arrive at the corresponding 

formulas of Kochin [ll. If now we set p2 = m(r = CD), then we arrive at 

the formulas of Khaskind 121. 
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